DEPARTMENT OF
BONE MARROW AND
STEM CELL TRANSPLANT
Narayana Health has a state-of-the-art bone marrow transplant (BMT) unit. The BMT unit has carried out over 500 bone marrow transplants, which is the largest number in Karnataka and one of the largest in the country. This unit has emerged as a referral centre for national and international patients for both autologous and allogeneic stem cell transplants. Patients have been referred from Oman, Iraq, Yemen, Afghanistan, Sri Lanka, Nigeria, Bangladesh, Nepal, Burma, Kenya and Pakistan for stem cell transplant procedures.

A cord blood banking facility has been recently established in collaboration with Rotary International, which functions both as a public and private cord blood facility. With a large number of cord blood units being available in our country, cord blood transplants can be offered to a large number of patients who do not have HLA matched sibling donors.
Bone marrow is the soft and spongy tissue found within bones which is rich in stem cells. The most primitive of these stem cells are the pluripotent stem cells, which are different from the other cells in the following aspects:

- They produce cells identical to themselves
- They have the capacity to produce one or more subsets of mature cells

These stem cells are of prime importance in bone marrow transplants.

Other sources of stem cells have gained popularity in the last decade, because their harvesting is better tolerated by patient while delivering almost identical success rates when compared to bone marrow transplants. These include peripheral blood stem cells and cord blood stem cells.

Some conditions which require Bone Marrow Transplant (BMT)

The conditions which necessitate a BMT can be broadly classified into 2 groups:

Cancerous Conditions
- Acute Myeloid and Lymphoblastic Leukemia
- Chronic Myeloid and Lymphoblastic Leukemia
- Hodgkin’s and Non-hodgkin’s Lymphoma
- Myelodysplastic Syndrome
- Myeloproliferative Neoplasms, Primary Myelofibrosis, etc
- Multiple Myeloma

Non-Cancerous Conditions
- Aplastic Anaemia
- Haemoglobinopathies such as Thalassemia and Sickle Cell Anaemia
- Immunodeficiency disorders
- Congenital errors of metabolism
- Congenital storage disorders

About Bone Marrow

Bone marrow is the soft and spongy tissue found within bones which is rich in stem cells. The most primitive of these stem cells are the pluripotent stem cells, which are different from the other cells in the following aspects:

- They produce cells identical to themselves
- They have the capacity to produce one or more subsets of mature cells

These stem cells are of prime importance in bone marrow transplants.

Other sources of stem cells have gained popularity in the last decade, because their harvesting is better tolerated by patient while delivering almost identical success rates when compared to bone marrow transplants. These include peripheral blood stem cells and cord blood stem cells.
What Are The Stages of a BMT?

Undergoing a Bone Marrow Transplant is a five-stage process.

- Physical examination – to assess recipient’s health status
- Harvesting – the process of obtaining stem cells to be used in the transplant
- Conditioning – preparing the body for transplant
- Transplanting the stem cells
- Recovery period

Physical Examination

Routine diagnostic tests such as complete haemogram, kidney function test, liver function test, X-ray, and urinalysis are performed. Also Human Leukocyte Antigen (HLA) typing and blood grouping are done to assess recipient/donor compatibility. This assessment of compatibility is essential to reduce risk of rejection of transplant.

 Harvesting the Cells from the Donor

Autologous Bone Marrow Transplant: The donor is the patient himself. Stem cells are taken from the patient either by bone marrow harvest or apheresis (a process of collecting peripheral blood stem cells), frozen, and then given back to the patient after intensive treatment.

Allogeneic Bone Marrow Transplant: The cells are taken from a healthy donor. Stem cells are taken either by bone marrow harvest or apheresis from a genetically matched donor, usually a brother or sister. Other donors for allogeneic bone marrow transplants may include the following:

- A parent/relative. A haplo-identical match is when the donor is a parent and the genetic match is at least half identical to the recipient
- Unrelated bone marrow transplants. The genetically matched marrow or stem cells are from an unrelated donor. Unrelated donors are found through national bone marrow registries

Peripheral Blood Stem Cell Transplant: The process of peripheral blood stem cell transplant is routinely performed, when compared to the bone marrow harvest method has this procedure is less invasive and easy to perform. Some studies even suggest that the stem cell yield by this method is higher when compared to bone marrow harvest. The process takes 4-6 hours after administering necessary medication for 4 days.

Donors are injected with Granulocyte Colony Stimulating Factor (GCSF) for a duration of 4 days to stimulate stem cell proliferation.

The donor stem cells are collected by a process of apheresis and administered intravenously to the patient. The donor stem cells have the property of stem cell homing whereby they migrate to the patient’s bone marrow and override his defective stem cells. This restores the ability of the patient’s bone marrow to produce blood elements.

Umbilical Cord Blood Transplant: Umbilical cord blood is a rich source of stem cells. After delivery or birth of the infant, cord blood can be collected from the umbilical cord (which is a waste, by-product of child birth) and preserved for later use. Cord blood possesses a higher concentration of stem cells than the adult blood. Around 80-100 ml of cord blood is collected and these stem cells are ideally suited for transplants in children. Before storage and preservation, the cord blood stem cells are typed, counted and tested. Cord blood cells are frozen until necessary for transplant.
Conditioning of the Patient

The conditioning process involves high doses of chemotherapy and sometimes radiation. It is carried out for three reasons:

• Destruction of the existing bone marrow cells to make room for the transplanted stem cells
• Destroy any existing cancer cells
• Suppression of activity of the immune system to decrease chances of rejection of donor stem cells

Transplanting the Stem Cells

The process of Bone Marrow Transplant does not involve the physical insertion of the marrow stem cells into the marrow of the recipient, but is more of an intricate and delicate blood transfusion method. The harvested stem cells are administered via a central venous catheter into the bloodstream from where they find their way to the marrow by a property of stem cells known as stem cell homing.

Recovery: The patient is constantly monitored to assess the success of the transplant. However, the procedure does involve a few risks, these include:

1. **Graft versus host disease (GvHD)**
 In this disease, the transplanted stem cells (“graft”) attack the recipients cells (“host”) as they are considered alien to the body.

 There are two types of GvHD:
 - **Acute GvHD** – Occurs during the first three months following the transplant.
 - **Chronic GvHD** – Develops from acute GvHD and can cause symptoms for many years.

2. **Infections**
 As a consequence of chemotherapy and bone marrow suppression, the body is transiently unable to produce cells to combat infections.

Types of Transplant and Age Group of the Patients
Dr. Sharat Damodar
MD, DNB, DM
Dr. Sharat Damodar is the Chief of Haematology and Transplant Services. He has immense experience in treating patients with leukemia, lymphomas and stem cell transplantation. He is a graduate from St. John’s Medical College, Bangalore and has an MD in Internal Medicine from St. John’s Medical College, Bangalore. He underwent training in Haematology and Stem Cell Transplantation in Christian Medical College, Vellore and has multiple papers in peer reviewed journals. Time and again, he has been invited by multiple institutes nationally and internationally for delivering lectures and sharing his experiences. He is the Chairman of the Hospital Transfusion Committee and is a member of multiple committees that devise guidelines in the hospital.

Areas of expertise
Bone Marrow & Stem Cell Transplant
Cord Blood Transplantation
Leukemia / Lymphoma (In Adults)
E-mail : sharat.damodar.dr@nhhospitals.org

Dr. Nataraj KS
MD, DM
Dr. Nataraj is a Consultant Haemato-oncologist and Transplant Physician. He is a graduate from Sri Devaraj Urs Medical College, Kolar, and has an MD in Internal Medicine from Kasturba Medical College, Manipal. He then received his training in Haematology from Nil Ratan Sircar Medical College and Hospital, Kolkata and underwent further training in blood and marrow stem cell transplantation from AIIMS, New Delhi. He currently deals with cases predominantly involving adult patients with haematological diseases and adult patients undergoing stem cell transplantation. He has authored numerous research papers that have been published in peer-reviewed national and international journals.

Areas of expertise
Leukemia
Lymphoma
Multiple Myeloma
Stem Cell Transplantation
E-mail : nataraj.ks.dr@nhhospitals.org
Autologous Bone Marrow Transplant: The donor is the patient himself. Stem cells are taken from the patient either by bone marrow harvest or apheresis (a process of collecting peripheral blood stem cells), frozen, and then given back to the patient after intensive treatment.

Allogeneic Bone Marrow Transplant: The cells are taken from a healthy donor. Stem cells are taken either by bone marrow harvest or apheresis from a genetically matched donor, usually a brother or sister. Other donors for allogeneic bone marrow transplants may include the following:

- A parent/relative. A haplo-identical match is when the donor is a parent and the genetic match is at least half identical to the recipient
- Unrelated bone marrow transplants. The genetically matched marrow or stem cells are from an unrelated donor. Unrelated donors are found through national bone marrow registries

Peripheral Blood Stem Cell Transplant: The process of peripheral blood stem cell transplant is routinely performed, when compared to the bone marrow harvest method has this procedure is less invasive and easy to perform. Some studies even suggest that the stem cell yield by this method is higher when compared to bone marrow harvest. The process takes 4-6 hours after administering necessary medication for 4 days.

Donors are injected with Granulocyte Colony Stimulating Factor (GCSF) for a duration of 4 days to stimulate stem cell proliferation.

The donor stem cells are collected by a process of apheresis and administered intravenously to the patient. The donor stem cells have the property of stem cell homing whereby they migrate to the patient’s bone marrow and override his defective stem cells. This restores the ability of the patient’s bone marrow to produce blood elements.

Umbilical Cord Blood Transplant: Umbilical cord blood is a rich source of stem cells. After delivery or birth of the infant, cord blood can be collected from the umbilical cord (which is a waste, by-product of child birth) and preserved for later use. Cord blood possesses a higher concentration of stem cells than the adult blood. Around 80-100 ml of cord blood is collected and these stem cells are ideally suited for transplants in children. Before storage and preservation, the cord blood stem cells are typed, counted and tested. Cord blood cells are frozen until necessary for transplant.

OUR FACULTY (FOR PEDIATRIC PATIENTS)

Dr. Sunil Bhat
MD, FPHO, FRAH
Dr. Sunil Bhat is a Consultant & Head of Paediatric Haematology, Oncology and Bone Marrow Transplantation Service at Mazumdar Shaw Medical Center of Narayana Health City, Bangalore. He is a graduate in Medicine and Paediatric Medicine from Jammu University and has undergone training in Paediatric Haematology, Oncology and BMT from Sir Ganga Ram Hospital at Delhi. He was further trained at the Children’s Hospital at Westmead, Sydney Australia, in Paediatric Oncology and earned a specialisation in Bone Marrow Transplantation there in Sydney. He has published more than 50 papers and numerous book chapters. He is active member of many committees and has delivered lectures/presented papers in national & international conferences. He is recipient of Dr. Nanak Chand Gold Medal from his excellency The President of India.

Areas of expertise
Bone Marrow & Cord Blood Transplant in children
Haploidentical Bone Marrow Transplant
Pediatric Cancers
Immunodeficiency Disorders
E-mail: sunil.bhat.dr@nhhospitals.org

Dr. Shobha Badiger
MD, DNB, FHO
Dr. Shobha is a Consultant Paediatric Haematologist and Oncologist. She has pursued her graduation from Karnataka Medical College, Hubli and a Masters in Paediatric Medicine from Bangalore Medical College, Bangalore. She has undergone training in Paediatric Haematology and Oncology from Narayana Health, Bangalore and is working as a consultant in the department. She manages paediatric patients with haematological diseases and those undergoing stem cell transplantations. She has been a guest speaker/faculty in numerous meetings

Areas of expertise
Paediatric Benign Haemotological Conditions
Paediatric Malignancies
Bone Marrow Transplant in Children
E-mail: shobha.b.dr@nhhospitals.org

Dr. Prathip Kumar
MD
Dr. Kumar is the Head of Blood Bank and Stem Cell Laboratory at Narayana Health City, Bangalore. He completed his MD in Blood Transfusion Medicine from AFMC, Pune and is responsible for overseeing all activities of the blood bank and stem cell processing laboratory. He has enormous experience in peripheral stem cell collection and processing.

Area of expertise
Transfusion Medicine
Stem cell processing
Newer apheresis techniques
E-mail: prathip.kumar.dr@nhhospitals.org
RESEARCH

• Customised treatment for acute leukaemias
• Characterisation of leukaemic stem cell for treatment interventions
• Study of mesenchymal stem cell interactions in leukaemic cells
• Haploidentical bone marrow transplant using newer modalities

FACILITIES

• Cord blood banking
• Stem cell cryopreservation
• HLA typing
• Unrelated donor searches

WHY CHOOSE NH FOR BONE MARROW TRANSPLANT?

• The department is one of the leading centres for Bone Marrow Transplant and has performed over 500 BMTs done.
• Non-myeloblative or mini-transplants for older patients or patients with multiple health problems allows for transplants in patients otherwise not suitable for stem cell transplant
• Cord blood transplants and haplo-identical transplants
• Significant reduction in post transplant complication making way for increased survival rates
• Capability to handle very small pediatric patients.

For more information please call

Phone: +91 80 7122 2358